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Abstract. Unstable particles can be consistently described in the framework of quantum field theory.
Starting from the full S matrix amplitudes of B+ → (2π, 3π)l+ν decays as examples of processes where the
ρ−ω resonances dominate, we propose a prescription for the mixing of two “quasi-physical” unstable states
that differs from the one obtained from the diagonalization of the M − iΓ/2 non-Hermitian Hamiltonian.
We discuss some important consequences for CP violation in the KL − KS system.

The ρ − ω and KL − KS mesons are two prime exam-
ples of two-level mixed systems useful for studying the
important properties of quantum mechanics and the fun-
damental interactions of unstable particles. The effects of
isospin breaking, in the case of the ρ − ω system, and CP
violation, in the case of the KL − KS system, convert the
corresponding eigenstates (ρI , ωI) or (K1, K2) into phys-
ical eigenstates (ρ, ω) and (KL, KS). These systems allow
us to study the violation of fundamental symmetries where
the effects of instabilities play an essential role.

Unstable particles can be consistently treated only in
the framework of quantum field theory [1,2]. They can-
not be described by asymptotic states in the calculation
of physical S-matrix amplitudes. Instead, they are asso-
ciated to propagation amplitudes (propagators) between
their production and decay locations, and one cannot de-
tach them from these mechanisms to extract truncated
amplitudes. In quantum field theory, unstable particles
or resonances are special cases of nonperturbative phe-
nomena obtained from a full re-summation of perturbative
bubble graphs [1,2]. In addition, the space-time behaviour
of the amplitudes for production and decay of resonances
obey, in extremely good approximation, the celebrated ex-
ponential decay law and the covariance properties for the
time-evolution amplitudes [2].

The conventional quantum-mechanical treatment of
symmetry breaking in two-level unstable systems consists
in finding the eigenstates that diagonalize a non-Hermitian
effective Hamiltonian of the form H = M − iΓ/2 [3,4],
where M and Γ are 2 × 2 Hermitian matrices describing
the mass and decay properties [5] of the unstable states. H
governs the time evolution of the so-called physical eigen-
states, which at initial time are given by

|X〉 = |Xs〉 + ε|Y s〉 , (1)
|Y 〉 = |Y s〉 − ε|Xs〉 , (2)

ε =
〈Xs|HSB|Y s〉

mX − mY + i
2 (ΓY − ΓX)

. (3)

Here |Zs〉 denotes an interaction eigenstate, mZ (ΓZ) is
the mass (decay width) of the unstable state, and ε is the
mixing parameter due to symmetry breaking. HSB is the
symmetry-breaking Hamiltonian that mixes the Xs and
Y s states. As could be easily checked, the physical states
are nonorthogonal; this can be traced back to the non-
Hermitian character of the Hamiltonian.

The purpose of this paper is to demonstrate that the
calculation of the full S matrix amplitude for a process
involving the production and decay of mixed resonances
leads to a different mixing prescription for the unstable
quasi-physical states than the one obtained from the diag-
onalization of the effective M−iΓ/2 Hamiltonian. In other
words, the inclusion of symmetry breaking in the evalu-
ation of transition amplitudes involving the approxima-
tion where resonances are described by asymptotic states
can be properly done by using the quasi-physical states
as given below in (4) and (5), rather than those in (1)
and (2). The numerical impact of using both approaches
in the evaluation of symmetry breaking, when extracting
truncated physical observables as branching fractions for
B → V lν [6,7], can be very important.

To be more specific, let us consider the S matrix am-
plitudes of the full decay processes B+ → (2π, 3π)l+νl,
which are dominated by the intermediate ρ and ω reso-
nances (this example illustrates the main characteristics
of a two-level unstable mixed system). We show that a con-
venient prescription for the physical quantum-mechanical
eigenstates should be taken as [7]

|ρ〉 = |ρI〉 + ε′|ωI〉 , (4)

|ω〉 = |ωI〉 + ε′′|ρI〉 , (5)
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in order to evaluate the matrix elements of the truncated
processes B+ → (ρ0, ω)l+νl in the presence of isospin
symmetry breaking. In the above equations, ε′ and ε′′ are
given by

ε′ =
m2

ρω

m2
ρ − m2

ω + imωΓω
, (6)

ε′′ =
m2

ρω

m2
ω − m2

ρ + imρΓρ
, (7)

where m2
ρω ≡ 〈ωI |H∆I=1|ρI〉 is the ρ−ω mixing strength.

This results in sizable numerical differences, with respect
to (1–3), in the evaluation of isospin symmetry-breaking
effects, as is discussed in [7].

Let us consider the full S-matrix amplitude for the
semileptonic process B+(pB) → π+(p1)π−(p2)l+(p)νl(p′),
where pi denotes the corresponding four momenta (the
results for the 3πlνl decay mode are straightforward). In-
cluding the contributions of intermediate isospin eigen-
states (ρI , ωI) and isospin-breaking effects through ρ−ω
mixing [8], we obtain (we assume that only the ρI can
couple to the ππ system, i.e., we ignore a possible direct
contribution ωI → π+π−):

M(B → 2πlν) =
GF Vub√

2
lµ

{Mµα(B+ → ρI∗)(Pρ)αβ(q)

+Mµα(B+ → ωI∗)(Pω)α
ν (q) × im2

ρω

× (Pρ)νβ(q)
}

igρππ(p1 − p2)β . (8)

Here GF is the Fermi constant, Vub is the relevant CKM
matrix element, gρππ is the ρππ coupling, lµ is the leptonic
current and q2 ≡ (p1 + p2)2 is the squared invariant mass
of the 2π system. The hadronic weak matrix element is
given by (since we neglect the lepton masses, we drop the
terms proportional to (p + p′)µ) [9]:

Mµα(B → V ∗) =
2
Σ

εµαρσpρ
BqσV (t) (9)

+i
{

gµαΣA1(t) − Qα

Σ
(pB + q)µA2(t)

}
,

where Σ ≡ mB+mV , Q = pB−q (t = Q2) and V (t), Ai(t)
are Lorentz-invariant form factors. The ∗ symbol means
that the vector meson is produced off its mass shell.

The propagators of the resonances are given by:

(Pi)αβ(q) =
−igαβ

q2 − m2
i + imiΓi

+ (terms in qαqβ). (10)

Since the ρI coupling to π+π− is a conserved effective
current, i.e., q · (p1 − p2) = 0, only the transverse com-
ponent of the vector meson propagators gives a non-zero
contribution. In addition, because the intermediate ρI and
ωI mesons are produced from the recombination of the
daughter-ū (in the b̄ → ū transition) and the spectator-
u quarks, the hadronic weak amplitudes are related by
Mµα(B+ → ωI) = Mµα(B+ → ρI). Thus (8) can be
written as:

M(B+ → 2πlν)

= i
GF Vub√

2
lµMµα(B+ → ρI∗) × gαβ

q2 − m2
ρ + imρΓρ

×
{

1 +
m2

ρω

q2 − m2
ω + imωΓω

}
× igρππ(p1 − p2)β . (11)

A straightforward computation of the 2π invariant
mass distribution leads to

dΓ (B+ → 2πlν)
dq2

=

√
q2

π

Γ (B+ → ρI(q2)l+ν) × Γ (ρI(q2) → π+π−)
(q2 − m2

ρ)2 + m2
ρΓ

2
ρ

×
∣∣∣∣∣1 +

m2
ρω

q2 − m2
ω + imωΓω

∣∣∣∣∣
2

. (12)

The q2 in the argument of ρI means that decay widths
must be taken with the ρI off its mass shell.

A very similar evaluation of the 3π mass distribution
in the decay B+ → π+π−π0l+νl gives (in this case, q2 =
(p1 + p2 + p3)2 corresponds to the 3π invariant mass):

dΓ (B+ → 3πlν)
dq2

=

√
q2

π

Γ (B+ → ωI(q2)l+ν) × Γ (ωI(q2) → π+π−π0)
(q2 − m2

ω)2 + m2
ωΓ 2

ω

×
∣∣∣∣∣1 +

m2
ρω

q2 − m2
ρ + imρΓρ

∣∣∣∣∣
2

. (13)

The factorization of the decay widths in (12) and (13) is
an exact result that follows from the conserved effective
current conditions in the ρ → 2π and ω → 3π vertices.

The quasi-physical on-shell decay widths of the B+ →
ρl+ν and B+ → ωl+ν decays are obtained by fixing the
2π- and the 3π-invariant masses, at the ρ and ω meson
masses, respectively (in practice, the cuts m2

V −∆ < q2 <
m2

V + ∆ are necessary to isolate the vector mesons from
the q2 distribution). Under these conditions, we get:

dΓ (B+ → 2πlν)
dq2

∣∣∣∣
q2=m2

ρ

=
1

πmρΓρ
Γ (B+ → ρI lν) × B(ρI → 2π)|1 + ε′|2, (14)

dΓ (B+ → 3πlν)
dq2

∣∣∣∣
q2=m2

ω

=
1

πmωΓω
Γ (B+ → ωI lν) × B(ωI → 3π)|1 + ε′′|2 . (15)

Therefore, as already pointed out in [7], the isospin-
breaking effects through ε′, ε′′ must be removed from the
measured invariant-mass distributions quoted in [6], in or-
der to compare quantities related by isospin symmetry.
The results given in (14) and (15) are identical to the
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ones obtained in [7], where it is assumed that the physical
quantum mechanical eigenstates for the ρ0 and ω mesons
are given by (4) and (5).

Another way to compare the symmetry-breaking ef-
fects in semileptoic B decays arising from the prescriptions
of (1–3) and (4–5) is to decompose the resonant pieces of
the amplitudes for 2π and 3π semileptonic B decays, re-
spectively. This gives:

1
sρ

{
1 +

m2
ρω

sω

}
=

1
sρ

{
1 +

m2
ρω

δ2

}
− 1

sω
× m2

ρω

δ2 , (16)

1
sω

{
1 +

m2
ρω

sρ

}
=

1
sω

{
1 − m2

ρω

δ2

}
+

1
sρ

× m2
ρω

δ2 , (17)

where sV ≡ q2 − m2
V + imV ΓV and δ2 ≡ m2

ρ − m2
ω +

i(mωΓω − mρΓρ) ≈ 2m̄{mρ − mω + i(Γω − Γρ)/2}, and
m̄ is the average mass of ρ and ω mesons. Note that the
first term in the right-hand side (r.h.s.) of (16) and (17)
corresponds to (1–3) and gives equal strengths for isospin
breaking in the B+ → (ρ0, ω)l+ν decay rates. However,
the second terms in the r.h.s. of (16) and (17) give very
different contributions, due to the propagation of the ω (ρ)
meson in the 2π (3π) channel.

From (14) and (15), we see that the effects of isospin
breaking in B+ → ρ0l+ν are more important than in
the B+ → ωl+ν transition, because |1 + ε′| ≈ 1.18, |1 +
ε′′| ≈ 1.0. This fact is accidental, because mω − mρ ≈ Γω,
and therefore the real and imaginary parts in ε′, have al-
most equal weights. The situation is quite similar in the
KL − KS system where mKL

− mKS
≈ (ΓKS

− ΓKL
)/2 ≈

ΓKS
/2; therefore, there is not an important numerical dif-

ference when computing mixing effects in KL → 2π decays
through (1)–(3) or (4) and (5). However, the effects are dif-
ferent in CP-violating KS → 3π decays. As is well known
(see [4,10]), the mixing of states accounts for the complex
phase (≈ π/4) in the CP violation parameters η+−,00 mea-
sured in KL → ππ decays. Using the same prescription as
the one for the ρ − ω system, we would find that (4) and
(5) imply that the complex phase in CP-violating param-
eters of KS → 3π decays should be almost zero, which is
in clear disagreement with the results obtained using the
conventional quantum-mechanical eigenstates of (1)–(3),
which predict the same phase as in KL → 2π.

In practice, however, it is difficult to test the differ-
ence between both approaches as far as B+ → ωlν and
KS → 3π are concerned. On the one hand, CP violation
(and therefore the complex phase of η+−0,000) has not been
observed yet in KS → 3π decays [the testing of whether
the mixing of unstable states is given accurately by (1)–
(3) or (4) and (5) is not possible]. A similar unfortunate
situation is present in the ρ − ω system, because the very
narrow width of the ω meson does not allow one to show,
by a fine scanning of the e+e− → π+π−π0 cross section
in the ρ − ω region, as done in e+e− → π+π− [11], the
interference effects due to ρ − ω mixing.

In conclusion, a consistent treatment of unstable par-
ticles, as provided by quantum field theory, leads to a dif-
ferent mixing scheme for quasi-physical states of a two-
level unstable system than the one obtained from the tra-
ditional approach based on an M − iΓ/2 non-Hermitian
effective Hamiltonian. Symmetry-breaking effects in trun-
cated observables, such as isospin violation in semileptonic
B+ → (ρ0, ω) transitions, or CP violation in KL − KS

decays, turn out to be very different in both approaches.
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